Skip to main content

Python SDK

The official Python SDK provides a simple and intuitive interface for interacting with the ViscribeAI API.

Installation

pip install viscribe

Quick Start

from viscribe import Client

client = Client(api_key="your-api-key-here")
You can set the VISCRIBE_API_KEY environment variable and initialize the client without parameters: client = Client()

Features

  • 🖼️ AI-powered image description, extraction, classification, VQA (Visual Question Answering), and comparison
  • 🔄 Both sync and async clients
  • 📊 Structured output with Pydantic schemas
  • 🔍 Detailed logging
  • ⚡ Automatic retries
  • 🔐 Secure authentication

Image Endpoints

1. Describe Image

Generate a natural language description of an image, optionally with tags.
from viscribe import Client

client = Client(api_key="your-api-key-here")

# Using image URL
resp = client.describe_image(
    image_url="https://img.com/cat.jpg",
    generate_tags=True
)

# Or using base64 encoded image
# resp = client.describe_image(
#     image_base64="...",
#     generate_tags=True
# )

print(resp.image_description)
print(resp.tags)

2. Classify Image

Classify an image into one or more categories.
# Using image URL
resp = client.classify_image(
    image_url="https://img.com/cat.jpg",
    classes=["cat", "dog"]
)

# Or using base64 encoded image
# resp = client.classify_image(
#     image_base64="...",
#     classes=["cat", "dog"]
# )

print(resp.classification)

3. Visual Question Answering (VQA)

Ask a question about the content of an image and get an answer.
# Using image URL
resp = client.ask_image(
    image_url="https://img.com/car.jpg",
    question="What color is the car?"
)

# Or using base64 encoded image
# resp = client.ask_image(
#     image_base64="...",
#     question="What color is the car?"
# )

print(resp.answer)

4. Extract Structured Data from Image

Extract structured data from an image using either simple fields or an advanced schema. Use simple fields for straightforward data extraction (max 10 fields):
# Using image URL
resp = client.extract_image(
    image_url="https://img.com/prod.jpg",
    fields=[
        {"name": "product_name", "type": "text", "description": "Name of the product"},
        {"name": "price", "type": "number", "description": "Product price"},
        {"name": "tags", "type": "array_text", "description": "Product tags"},
    ]
)

# Or using base64 encoded image
# resp = client.extract_image(
#     image_base64="...",
#     fields=[
#         {"name": "product_name", "type": "text", "description": "Name of the product"},
#         {"name": "price", "type": "number", "description": "Product price"},
#         {"name": "tags", "type": "array_text", "description": "Product tags"},
#     ]
# )

print(resp.extracted_data)
Field Types:
  • text: Single text value
  • number: Single numeric value
  • array_text: Array of text values (max 5 items)
  • array_number: Array of numeric values (max 5 items)

Advanced Schema (For complex/nested structures)

Use advanced schema for complex nested structures or when you need more control:
from pydantic import BaseModel

class Product(BaseModel):
    product_name: str
    price: float
    specifications: dict

# Using image URL
resp = client.extract_image(
    image_url="https://img.com/prod.jpg",
    advanced_schema=Product  # Pass the class directly
)

# Or using base64 encoded image
# resp = client.extract_image(
#     image_base64="...",
#     advanced_schema=Product
# )

print(resp.extracted_data)
Either fields or advanced_schema must be provided, not both.

5. Compare Images

Compare two images and get a description of their similarities and differences.
# Using image URLs
resp = client.compare_images(
    image1_url="https://img.com/cat1.jpg",
    image2_url="https://img.com/cat2.jpg"
)

# Or using base64 encoded images
# resp = client.compare_images(
#     image1_base64="...",
#     image2_base64="..."
# )

# Or mix and match (one URL, one base64)
# resp = client.compare_images(
#     image1_url="https://img.com/cat1.jpg",
#     image2_base64="..."
# )

print(resp.comparison_result)

User Endpoints

Get Credits

Check your remaining credits and total usage:
credits = client.get_credits()
print(f"Remaining credits: {credits.remaining_credits}")
print(f"Total credits used: {credits.total_credits_used}")

Submit Feedback

Provide feedback on API responses to help improve the service:
# First, make an API call to get a request_id
response = client.describe_image(
    image_url="https://example.com/image.jpg"
)

# Then submit feedback for that request
feedback_response = client.submit_feedback(
    request_id=response.request_id,
    rating=5,  # Rating from 0-5
    feedback_text="Perfect image description!",
)

print(f"Feedback ID: {feedback_response.feedback_id}")

Image Input

All endpoints support two ways to provide images:
  1. Image URL: Provide a publicly accessible URL
    resp = client.describe_image(image_url="https://example.com/image.jpg")
    
  2. Base64 Encoding: Encode your image as base64
    resp = client.describe_image(image_base64="...")
    
You must provide either image_url or image_base64, not both. For the Compare endpoint, you can mix and match (e.g., image1_url with image2_base64).

Async Usage

All endpoints support async operations:
import asyncio
from viscribe import AsyncClient

async def main():
    client = AsyncClient(api_key="your-api-key-here")

    # Using image URL
    resp = await client.describe_image(
        image_url="https://img.com/cat.jpg"
    )

    # Or using base64
    # resp = await client.describe_image(
    #     image_base64="..."
    # )

    print(resp)

    # ... use other endpoints as above

asyncio.run(main())

Error Handling

The SDK automatically handles common errors and provides helpful error messages:
from viscribe import Client, ViscribeError

client = Client(api_key="your-api-key-here")

try:
    resp = client.describe_image(image_url="https://img.com/cat.jpg")
except ViscribeError as e:
    print(f"API Error: {e}")

Resources

Support

🎁 Get started with free credits! Visit dashboard.viscribe.ai to sign up and get your API key.